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Abstract—The problem of uncertainty of inverse problem solution for afirst-order reaction with rate constant
distribution of reactive statesis considered. Although every distribution determines the reaction kinetics unam-
biguously, the inverse problem solving recovers a set of distributions in accordance with the same kinetic data
A choice of one of them is shown to be impossible in principle because al distributions give the same descrip-
tion of the reaction kinetics, and uncertainty of the solution remains even if the accuracy and number of mea-
surements are increased many times. A method for the calculation of a set of distributions is proposed. The
method can be applied to systems with both discrete and continuous sets of states. The distributions belonging
to the set of inverse problem solutions are shown to have invariants, which can be determined from the initial
moments of normalized distributions or directly from data on the reaction kinetics. The physical meaning of the
invariantsis considered as statistical rate constants for states with high, medium, and low reactivities that char-
acterize the width of the true distribution and the degree of its asymmetry. The application of the invariantsis
considered for particular examples of the fluorescence decay of Rhodamine 6G in porous glasses and of
5,10,15,20-tetraki s(pentafl uorophenyl)porphyrin in the Langmuir—Blodgett layers. Despite uncertainty of the
inverse problem solution, the application of the invariants givesrise to unambiguous characteristics of the reac-
tivity of compounds in reactions with distributed parameters.

INTRODUCTION

A kinetic curve of first-order reactions often differs
from an exponentia curve; it is characterized by the
reactivity distribution and can be represented by the
sum of two or more exponentials. Such a multiexpo-
nential kinetics is typical of not only multicomponent
reactions like, for example, the fluorescence of a mix-
ture of fluorophores or the radioactive decay of a mix-
ture of isotopes. It is inherent in heterogeneous reac-
tions[1], reactionsin polymers [2] and organic glasses
[3], and reactions in an organized molecular environ-
ment, which have recently attracted great attention.
These are, for example, porphyrin fluorescence in the
Langmuir—Blodgett layers [4]; the reactions of benzophe-
noneincluded in the cyclodextrin ring [5]; and reactionsin
polymeric microblocks [6], complexes with polynucle-
otides[7], membranes[8], micelles[9], vesicles[10], etc.

The first distribution recovery in heterogeneous
reactions was proposed more than 60 years ago and
made by the approximate replacement of exponentials
by the Heaviside functions [1]. This estimation with
some modificationsis still being used [11]. However, it
is useless for distributions with a certain shape (for
example, narrow) and does not correspond to the accu-
racy of modern experiments. Several more precise
methods have by now been devel oped to determine dis-
tributions as applied to fluorescence studies, where the
kinetic curve of fluorescence decay is complicated by
convolution with an excitation pulse and cannot be
obtai ned without knowing thelifetimedistribution [12].

These methods were compared in [13-15]. However, ho
method isavailablefor therecovery of distributionsthat
provide an exact description of the kinetics of chemical
reactions. A distribution can be recovered only for
some simple kinetic functions, such as that in the gem-
inal recombination of electron-cationic pairs[3]. When
the experimental conditions change, the kinetics of the
same reaction becomes more complicated, and the distri-
bution cannot be recovered [3].

The problem of the distribution recovery is aso
complicated by a possible ambiguous solution of the
inverse problem, which is observed sometimes for
kinetic curves distorted by convolution [16]. The
uniqueness of the solution is assumed to be achieved
with quite a high accuracy of both experiment and its
description [15, 17, 18].

In this work, a method for distribution recovery in
chemical reactions of a first order is proposed. The
solutions of the inverse problem were obtained by this
method. Thisallowed usto analyze their properties and
to propose unambiguous characteristics of reactivity in
terms of statistical invariants of distributions.

METHOD FOR DISTRIBUTION RECOVERY

For a discrete set of n states, the kinetic curve of a
reaction can be represented as the sum

Y(t) = Zaiexp(_kit)i (D

i=1
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where Y(t) is the concentration (or a quantity propor-
tiona to the concentration) at the moment t, and a, and
k; are the amplitude (concentration) and rate constant of
theith state, respectively.

For a continuous set of states, the sumin Eq. (1) is
replaced by the integral

00

Y(t) = J'a(k) exp(—kt)dk, )
0

where a(k) isthe distribution density over rate constants k.

To find the discrete distribution corresponding to
experimental data Yj(t;), one has to solve the set of
Eqgs. (3) with respect to'the unknown quantitiesa, and k;

zaiBij =Y, ]

where B = exp(—kt;) and N is the number of experi-
mental p0| nts and the corresponding equations.

The set of Egs. (3) can be solved by iterative meth-
ods and has a variety of approximate solutions because
of the inevitable error in experimental data. Since this
problem is classified as incorrect according to
Tikhonov, a search for a stable solution is performed
under the conditions of various types [12, 16]. The
requirement that the number of particles g = 0 be non-
negative already eliminates solutions without physical
meaning [10]. The best solution is selected from the
remaining solutions under the condition that the calcu-
lated curve Y(t) hasaminimal deviation from the exper-
imental points according to the x? criterion:

= pZ[Y(t) Y} 1+01, (4

where p isthe number of unknown quantities and g; is
the error of the jth measurement. The calculated Y(t)
curveisstrictly contained in the set of data points under
the condition that x> =1 + 0.1.

For the recovery of a continuous distribution, one
can apply the same approach as in the exponentia
series method (ESM) [14] for the deconvolution of the
fluorescence decay curve. According to ESM, the inte-
gral in Eq. (2) is replaced by the approximate sum of
many exponentials with fixed rate constants k;, which
are uniformly distributed in a prespecified interval on
the logarithmic scale of k. As aresult, the problem is
reduced to the solution of the set of Egs. (3) with con-
stant coefficients B; with respect to unknown quantities

a. The distribution recovered by ESM in the a(logk ) —

logk plot consists of steps with equal widths, which
approximately describe the true continuous distribu-
tion.

The above methods to be applied need a priori
knowledge about the type (continuous or discrete) of
the desired distribution. However, when studying the

=12, ...,N, 3)
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kinetics of chemical processes, the number of reactive
statesis usually unknown beforehand.

In thiswork, we devel oped ageneral and more accu-
rate method of approximate solution recovery for the
set of Egs. (3). We may call it the method of hyperbolic
series (MHS). It does not require the number of partic-
ipants of the process to be known beforehand. For dis-
tribution recovery using MHS, let us assume that all
reactive states can be divided into n groups, each of
which contains different states in such a way that the
number of statesin theith group decreasesin the course
of thereaction according to thelaw ¢,(1 + kit/v)~, where
¢; and k; are the initial number of states and the kinetic
parameter of the reaction in the ith group, respectively.
In this case, the kinetic curve of the reactions can be
represented as the sum of power functions of the hyper-
balic type

Y = Y eB+ ST )
i=1

where n and v are prespecified positive integers.

The Y(t) function specified by Eq. (5) is an approxi-
mation and describes the reaction kinetics in a finite
time interval, which is aways implemented in the
experiments. The function is convenient because it
coincides with the exponential function in any finite
interval of variation of theargument 0 < X< X, S0 that
the (1 + x/v)V/exp(-X) ratio differs from 1 by less than
an indefinitely small value of € >0 at v > (X,,,,)%/2€.

The inverse Laplace transform of the Y(t) function
specified by EqQ. (5) gives rise to the exact analytical
expression for a(k):

\

VvV - —V V-
a(k) = m;ciki K’ texp(=kv/k).  (6)

In order to seek Y(t), we prespecified n, v, the inter-
val of possible k; values, and the k; values uniformly
distributed in the specified interval on the logarithmic k
scale. Then only the ¢, parameters remain unknown.
They are found from the set of Egs. (3a) with the congtant
coefficients H;; = (1 + kit; ;)™ on condition that ;> 0:

n

ZCiHij =Y, j=L42..,N. (3a)

The number of groups n can be assumed to be quite
high. Wetook n=10-100. If some groupsturn out to be
unnecessary, ¢ corresponding to these groups are found
to be equal to 0. Therefore, the approximating function
Y(t) can be very complicated with many fitting param-
eters ¢. This provides broad possibilities for a search
for the most exact description of the kinetic curve. As
soon as it has been found, the corresponding distribu-
tion is automatically obtained from Eq. (6). Since at
v — oo Eq. (5) is transformed into Eqg. (1), the MHS
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Fig. 1. Recovery of distributions using the method of hyperbolic series: (a) 3: 3: 4ternary system, (b) 1: 1 binary set; (c) rectangular
continuous distribution. True distributions are shown by vertical lines.

can be used to determine both continuous and discrete
distributions.

To check the MHS, we simulated the kinetic curve
of afirst-order reaction with specified distributions for
cases when the data scatter is described by the Gaussian
or Poisson statistics. The exact kinetic curve Y(t) spec-
ified by the true distribution was caculated using Eq. (1)
when Y(t) changed from 10° to 2 x 103. The experimen-
tal values of Y, at the moment t; (number of points
N = 500) were obtained as the Poisson or Gaussian ran-
dom value with a mean equal to the exact Y(t;) vaue.
Then the inverse problem was solved: the MHS was

used to search for the a(k) distribution, which describes
experimental data.

Figure 1 shows that the proposed method can
recover an unambiguous solution, distinguish a contin-
uous distribution from adiscrete one, and determinethe
number of active reaction centers. For example, the
MHS finds the valid distribution for a3 : 3 : 4 ternary
system (Fig. 14), and the acceptable value x> = 1.075 is
achieved at v = 1000. Thisdistribution isformally con-
tinuous. However, the parameters found are grouped in
three narrow kintervals so that the distribution obtained
can be considered to be discrete. A further increase in
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v > 1000 resultsonly in anarrowing of the found peaks,
and at lower v < 1000 none of the other distributions
agrees with the experiment. Similarly, for al: 1 binary
system, the MHSfinds avalid discrete distribution with
the same composition (surface areas under the peaks
are the same) (Fig. 1b), and the acceptable value x> =
1.12 isachieved at values aslow asv = 200. For asys-
tem with a continuous distribution of states, the MHS
finds a distribution that is close to true and provides a
valid description of the kinetics (x> = 1.06) already at
v =150 (Fig. 1c).

Thus, the MHS gives inverse problem solutions
describing experimental data with the highest accuracy
restricted by the experimental error.

Although the results obtained show that an unam-
biguous solution of the inverse problem using MHS is
really possible, strictly speaking, many examples of
unambiguous solutions do not prove its uniqueness for
any sets of states. On the other hand, one example is
sufficient to prove that ambiguity is possible. Using the
MHS, we found that some quite complicated distribu-
tionsthat differ considerably in shape give kinetic func-
tions coinciding in an interval of concentrations that
varies by 18 orders of magnitude. In order that the dif-
ference in these functions exceed 1%, achangein con-
centration of 24-30 orders of magnitude is required,
which is higher than reasonable experimental possibil-
ities. Thissituation forced usto give special attention to
an analysis of ambiguous solutions.

AMBIGUOUS SOLUTIONS
OF THE INVERSE PROBLEM

For a search and analysis of ambiguous solutions,
we simulated the kinetic curves of afirst-order reaction
with the specified discrete set A of 10 reactive states
with equimolar composition.

The exact kinetic curve Y(t) specified by set A (solid
line) and experimental points (their number was taken
as equal to N = 100) with the random scatter according
to the Gaussian statistics with the mean-square error of
measurements o.,, = 0.003 are presented in Fig. 2a.
The deviations of the experimental points from the
exact curve AY; = Y, — Y(t;) characterizing the scatter of
experimental dataare presented in Fig. 2b.

The subsequent solving of the inverse problem by
the standard search for a discrete distribution of several
states recovers a series of discrete sets describing the
same kinetic curve Y(t) with approximately the same
mean-square error o equal to the experimental error
O.xp- SOMe of the recovered distributions, in addition to
the true distribution A of 10 states, are presented in
Fig. 3: set B of 16 states, C of 7 states, and D of 3 states.
The same data can easily be described by sets with a
higher number of states. Since all these distributions
give the equivalent description of the experiment, we
can conclude that a variety of discrete solutions to the
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Fig. 2. (a) Kinetic curves of the first-order reaction involv-
ing 10 reactive states with the specified composition (set A,
g =0.1,k=2"x 10~ (solid line) and experimental points
(N = 100) with the scatter according to the Gaussian statis-

tics; (b) deviations AY of experimental points from mean
values.

problem exist, and the desired number of reactive states
for sufficiently complicated setsis, thus, uncertain.

Some continuous distributions recovered by MHS
are presented in Fig. 4. To verify the accuracy of the
solutions, the kinetic curve of the reaction was calcu-
lated from the recovered distributions by applying
Eqg. (5), and then this curve was compared with the
experimental data. At v > 3 the error o of kinetics
description by the recovered distributionsisfound to be
the same and equal to the experimenta error (o =
0.003). Note that the deviations (AY) of the experimen-
tal datafrom the calculated curves shownin Figs. 4 and
2 amost coincide. This means that the method pro-
posed provides the highest accuracy of solutions and
finds the optimal fitting curve, which virtually coin-
cides with the true curve of the reaction at the absolute
accuracy of measurements. Thus, neither the accuracy
of measurements nor the accuracy of analysis can be a
criterion for the choice of the true distribution from a
variety of solutions.

To confirm this conclusion, simulation experiments
were performed with the highest (possible to date)
accuracy of measurements. The number of experimen-
tal points with the random scatter according to the Pois-
son statistics was taken as equal to N = 500. The initia
signal was taken as equal to Y(0) = 10%. Under these
conditions, the initial error of measurements is 0.1%.
The examples of continuous solutions recovered are
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Fig. 3. Discrete distributions describing the kinetic curvein Fig. 2: (1) initial distribution A of 10 states and (2) recovered distribu-
tions B of 16 states, (3) C of 7 states, and (4) D of 3 states. Amplitudes for B and C are marked by dotted lines for clarity.
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Fig. 4. Continuous distributions describing the experimental data presented in Fig. 2 and curves approximating them by Eq. (5) at
n =20 and parameter v equal to (1) 4 (distribution E), (2) 10 (distribution F), and (3) 100 (distribution G). The corresponding devi-
ations AY of the experimental points from the calculated curves are presented on the right.
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Fig. 5. Continuous solutions a(k) of the inverse problem for the reaction specified by set A (Poisson statistics, number of experi-
mental points N = 500) found by the MHS at n = 20 and parameter n equal to (1) 6 (distribution P1), (2) 20 (distribution P2), and
(3) 150 (distribution P3) and residuals r of the experimental points from the fitting curves.

presentedin Fig. 5. Residualsr (asthe characteristics of
differences between the experimental points and the
kinetic curves computed from the recovered distribu-
tions) were calculated using the equation

ry =Y, - Yy )/a, ™

Asfollowsfrom Fig. 5, despite the highest accuracy
of the model experiment, there is a variety of distribu-
tions describing the experimental data with approxi-
mately the same residua profile. Moreover, the accu-
racy of the fitting does not allow us to draw a conclu-
sion about the shape of the true distribution. For
example, distribution P3 (at v = 150) is closer to adis-
crete one than distribution P2 (at v = 20) but gives a
somewhat higher (x> = 1.09) error of the fitting com-
pared to that for P2 (x> = 1.08).

The results obtained show that the solution of the
inverse prablem for a multicomponent reaction of the
first order can be uncertain. In such cases, to choosethe
valid solution, the exact number of participants of the
process should be determined in additional experi-
ments.

Uncertainty is usually avoided using the so-called
principle of lowest expenses. the simplest solution,
which requires the lowest number of parameters, is
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preferable [16]. For example, discrete distributions of
two to three states are usually used for the description
of fluorescence decay [12, 19]. However, this approach
does not guarantee that the chosen distribution is true.
Asaresult, characteristics of statesthat probably do not
exist, are obtained.

INVARIANTS OF SOLUTIONS
OF THE INVERSE PROBLEM

The obtained solutions have common properties:
distributions different in shape lie in approximately the
same interval of the k values as the true distribution
does; in addition, they reproduce the kinetic curve of
the reaction. Therefore, we can assume that a set of
inverse problem solutions has invariants, that is, quan-
tities retaining their values on going from one distribu-
tion to another. To check this assumption, we chose the
initial moments of normalized distributions of the sth
order as possible invariants:

K = Jo'ksa(k)dk = 3 Ka, 8)

i=1
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(Ink)* = [(Inky‘a(kidk = 3 (Ink)’a,. )
J .

i=1

The results of calculation of the moments of the
recovered distributions are presented in Tables 1 and 2.
The same results were obtained with different realiza-

tionsof experimental data. It can beseenthat 1/k, Ink,

and k change dlightly (within 10%) on going from one
distribution to another. Their values are close to the true
moments of distribution A. Thisisvalid even when the
error of kinetics description by the found solution is
two times higher than the experimental error (Table 1,
distribution D with o = 0.006).

The accuracy of determination of the moment
decreases with an increase in its order s. Nevertheless,

the scatter of k* = 0.0014-0.0019 s2 and k* = (L.2—
3.0) x 10* s~ remains appropriate for an unambiguous
characterization of the distributions describing the
kinetics with an error no higher than the experimental
error. It is important that enhancing the accuracy of
measurements (Table 2) enables one to decrease the

scatter of the I? and k_3 values. In this case, the distri-
butions, which correctly describe the kinetics (that is,

for which x> =1+ 0.1), give moment values that almost
coincide with the true moments despite the ambiguity
of the distributions themselves.

Thus, the moments of distributions from a set of
inverse problem solutions are approximately invariants,
whose accuracy of determination results from the
experimental error and the accuracy of kinetics descrip-
tion. The moments areinvariant because they are unam-
biguoudly related to the reaction kinetics. At s= -1, it
follows from Eq. (8) that

(=)

1/k = IY(t)dt. (10)
0

One can easily be convinced of the latter by inserting
the expressions for Y(t) by Egs. (1) or (2) into Eq. (10).
Thus, the mean value of 1/k isequal to the area under
the kinetic curve Y(t) and, hence, isan invariant of dis-
tributions describing this curve. Sincelow 1/k make the
largest contribution to the sum of inverse k values, the
guantity

Kiw = 1/(1/K) (11)

is a statistical characteristic of reaction rate constants
for the states with low reactivity.

Table 1. Moments of normalized distributions found for the model kinetic curve of the reaction specified by distribution A

(100 points, Gaussian statistics, Ogy,, = 0.003)

Distribution* o 17k, s Ink k,st 12 x 108, s I x 104 53
A 0.003 999 -5.39 0.020 14 12
B 0.003 1030 -5.39 0.021 1.7 2.1
C 0.003 1060 -5.39 0.022 1.9 3.0
D 0.006 946 —-5.47 0.014 0.5 0.2
E 0.003 1058 -5.38 0.022 1.9 2.6
F 0.003 943 -5.39 0.021 16 18
G 0.003 1160 -5.40 0.021 15 13

* The distributions are presented in Figs. 3 and 4.

Table2. Moments of normalized distributions found for the model kinetic curve of the reaction specified by distribution A

(500 points, Poisson statistics, Y(0) = 106)

Distribution* X2 Kk, s Ink k,st 12 x10% 52 | K x 104 52
A 1.04 999 539 0.020 14 12
P1 1.33 1014 530 0.022 18 21
P2 1.08 1007 538 0.020 14 13
P3 1.00 1001 538 0.021 15 13

* The distributions are presented in Figs. 3 and 5 (without normalization).
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At s=1, weobtain from Egs. (1), (2), and (8) that

k= dY@®)]
dt |i-o

Equation (12) suggests that the mean value of the

rate constant k isequal to theinitial reaction ratefor al
distributions describing the kinetic curve Y(t) and,
hence, is an invariant of these distributions. Since the
high k values contribute greatly to the sum of the k val-
ues, the quantity

(12)

Khign = k
is a statistical characteristic of reaction rate constants
for the states with high reactivity.

Similarly, at s> 1 the expressionsfor the gth derivative
at zero time can be obtained from Egs. (1), (2), and (8):

K = YO

dt® fi=o

The mean values of k° are also invariants. However,
the accuracy of their determination decreases with an

increasein s. Asiswell known, the numerical differen-
tiation of the functions can be applied upto s< 5.

The mean value of Ink is related to the reaction
kinetics by the more complicated relation

(13)

[

Ink = IY—(t) XP(Y) (14)

To prove Eqg. (14), one hasto replace the lower limit
of integration of itsright part by the low € value, insert
the expression for Y(t) from Egs. (1) or (2), integrate
with respect to t, and go to the limit at € — 0.

As follows from Eq. (14), the value of Ink is an
invariant of the solutions describing Y(t). It determines
the center of gravity of the distribution on the logarith-
mic scale of k and halves the area under the symmetri-
cal distribution. The value of k,, at the center of gravity
of the distribution can be found from the equation

ko = exp(Ink). (15)

It is astatistical characteristic of the medium inter-
val of reaction rate constants. It can be named the
weight-average rate constant and has a significant dis-
tinctive feature: regardless of the distribution shape, the
concentration decreases by a factor of about e at the
timet, = 1/K,,.

The expressions relating the reaction kinetics to the
moments of ahigher order of s> 1 can be obtained sim-
ilarly. However, already the first three invariants (Kygn,
k,, and ki) determined from the initial rate, the center
of gravity of the distribution, and the area under the
kinetic curve give sufficiently important characteristics
of the true distribution. The distance between k4, and
ki, ON the logarithmic scale of k quantitatively charac—
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terizes the distribution width, and their positions rela-
tively to the weight-average constant at the center of
gravity suggest a degree of asymmetry of the distribu-
tion. In symmetrical distributions, Ink,, liesin the mid-
dle between Ink;,, and Inky;gn. In asymmetrical distribu-
tions, if, for example, Ink,owlsfartherfrom the center of
gravity than Ink;qn, the left descending region of the
a(Ink) curve with ?ow rate constants is more elongate.

Note that the caculaion of invariants can adso be
applied to both broad and very narrow distributions. For a
monoexponentia kinetic curve, dl of the three invariants
(Keiare Ko @d ki) coOincide and equd thetrue rate constant.
Inthis case, they are merely different determinations of the
same rate constant. Therefore, their exact coincidenceisa
criterion for asmple reaction of the first order.

APPLICATION OF INVARIANTS

Thekineticsisambiguously described, for example,
in analysis of the fluorescence decay of Rhodamine 6G
in porous SiO, glass [20]. Thus, Hungerford et al. [20]
found that with a dye concentration of 0.24 mM the
reactivity of the dye can be explained by two mutually
exclusive sets of states. The short-lived state predomi-
natesinthefirst set (a; =0.72,1,=3.37,8,=0.28, T, =
4.66). The long-lived state prevails in the second set
(&, =0.47,1,=3.10, & = 0.53, 1, = 4.30). None of the
found sets can be preferred because both of them con-
tain a minimal number of parameters and describe the
experimental data with the same accuracy. This uncer-
tainty can be eliminated using invariants. Inserting the
values of a and k; = 1/1; into Egs. (8) and (9), one can
easily be convinced that the invariants of Rhodamine
6G fluorescence retain their values on going from one
set to another. For example, both sets give the same
vaue 1, = 3.7 ns (Int,, = 0.72In3.37 + 0.28In4.66 =
0.47In3.10 + 0.53In4.30). Thus, despite an uncertainty
in the inverse problem sol ution, the unambiguous char-
acteristics of Rhodamine fluorescence was obtained.

Let us consider published data [4] on the fluores-
cence decay of 5,10,15,20-tetrakis(pentafluorophe-
nyl)porphyrin (PFP) in the Langmuir—Blodgett layers
as the second example of the application of invariants.
The kinetics of this process is multiexponential and
described by discrete distributions. With an increasein
the PFP concentration, the distributions (due to their
uncertainty) changeirregularly. Thus, the concentration
dependence of the reaction kinetics cannot be judged.
Using the data on the distributions (Table 1 in [4]), we
calculated the invariants of the fluorescence decay of
PFP. Theresults of the calculation (Fig. 6) show that the
fluorescence of PFP is characterized by a narrow sym-
metrical distribution, whose width decreases with PFP
concentration. The ki, K, and kg invariants system-
atically decrease with PFP concentratl on, indicating an
interesting phenomenon: the slowing down of fluores-
cence decay. In fact, this phenomenon is seen in the
kinetic curves without analysis. However, the phenom-
enon can be quantitatively characterized by the calculation
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Fig. 6. Plot of the invariants (1) kg, (2) Ky, and (3) kyign Of
PFP fluorescence decay in the Langmuir—Blodgett layers vs.
PP concentration (cal culated from the published data[4]).

of invariants. As can be seen in Fig. 6, the region of high
concentrations is of greatest interest, where the invariants
decrease especiadly strongly, so that further change in the
structure of the PFP aggregates could result in amore con-
siderable dowing down of fluorescence decay.

CONCLUSION

In this work, the method of hyperbolic series was
proposed for the determination of distributionsin first-
order chemical reactions. The method was verified for
model systems to demonstrate that it recovers the dis-
tribution corresponding to experimental data with the
highest accuracy. It does not require any a priori
knowledge of the type of the initial distribution, and it
can be applied to a search for both continuous and dis-
crete distributions.

Using this method, we found that distributions with
different shapes can give the same reaction kinetics
coinciding to very high degrees of conversion. Hence,
an ambiguity of distributions is a property inherent in
the kinetic description of a multicomponent system.

Under conditions of uncertainty, we propose the use
of invariants determined from the moments of distribu-
tions. The approach based on invariants is advanta-
geous compared to the traditional analysis of distribu-
tions. First, the invariants do not require a priori
hypotheses and seriously restrict arbitrariness in the
interpretation of kinetic data. Second, they provide
unambiguous quantitative characteristics of the true
distribution. Third, the invariants make it possible to
monitor the experimental accuracy necessary for reli-
able estimations. For example, if an invariant does not
retain its value on going from one of the found distribu-
tionsto another, in order to estimateit reliably the accu-
racy of measurements needs to be increased. Findly,
the more invariants are determined, the more complete
is the information on the true distribution. Asis known
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from statistical physics, the knowledge of all moments
is equivalent to the knowledge of the distribution.

Note that the use of invariants provides unambigu-
ous quantitative characteristics of the reactivity of com-
pounds in multicomponent reactions.
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