
 

0023-1584/03/4404- $25.00 © 2003 

 

MAIK “Nauka

 

/Interperiodica”0450

 

Kinetics and Catalysis, Vol. 44, No. 4, 2003, pp. 450–458. Translated from Kinetika i Kataliz, Vol. 44, No. 4, 2003, pp. 495–504.
Original Russian Text Copyright © 2003 by Margolin.

 

INTRODUCTION

A kinetic curve of first-order reactions often differs
from an exponential curve; it is characterized by the
reactivity distribution and can be represented by the
sum of two or more exponentials. Such a multiexpo-
nential kinetics is typical of not only multicomponent
reactions like, for example, the fluorescence of a mix-
ture of fluorophores or the radioactive decay of a mix-
ture of isotopes. It is inherent in heterogeneous reac-
tions [1], reactions in polymers [2] and organic glasses
[3], and reactions in an organized molecular environ-
ment, which have recently attracted great attention.
These are, for example, porphyrin fluorescence in the
Langmuir–Blodgett layers [4]; the reactions of benzophe-
none included in the cyclodextrin ring [5]; and reactions in
polymeric microblocks [6], complexes with polynucle-
otides [7], membranes [8], micelles [9], vesicles [10], etc.

The first distribution recovery in heterogeneous
reactions was proposed more than 60 years ago and
made by the approximate replacement of exponentials
by the Heaviside functions [1]. This estimation with
some modifications is still being used [11]. However, it
is useless for distributions with a certain shape (for
example, narrow) and does not correspond to the accu-
racy of modern experiments. Several more precise
methods have by now been developed to determine dis-
tributions as applied to fluorescence studies, where the
kinetic curve of fluorescence decay is complicated by
convolution with an excitation pulse and cannot be
obtained without knowing the lifetime distribution [12].

These methods were compared in [13–15]. However, no
method is available for the recovery of distributions that
provide an exact description of the kinetics of chemical
reactions. A distribution can be recovered only for
some simple kinetic functions, such as that in the gem-
inal recombination of electron-cationic pairs [3]. When
the experimental conditions change, the kinetics of the
same reaction becomes more complicated, and the distri-
bution cannot be recovered [3].

The problem of the distribution recovery is also
complicated by a possible ambiguous solution of the
inverse problem, which is observed sometimes for
kinetic curves distorted by convolution [16]. The
uniqueness of the solution is assumed to be achieved
with quite a high accuracy of both experiment and its
description [15, 17, 18].

In this work, a method for distribution recovery in
chemical reactions of a first order is proposed. The
solutions of the inverse problem were obtained by this
method. This allowed us to analyze their properties and
to propose unambiguous characteristics of reactivity in
terms of statistical invariants of distributions.

METHOD FOR DISTRIBUTION RECOVERY
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—The problem of uncertainty of inverse problem solution for a first-order reaction with rate constant
distribution of reactive states is considered. Although every distribution determines the reaction kinetics unam-
biguously, the inverse problem solving recovers a set of distributions in accordance with the same kinetic data.
A choice of one of them is shown to be impossible in principle because all distributions give the same descrip-
tion of the reaction kinetics, and uncertainty of the solution remains even if the accuracy and number of mea-
surements are increased many times. A method for the calculation of a set of distributions is proposed. The
method can be applied to systems with both discrete and continuous sets of states. The distributions belonging
to the set of inverse problem solutions are shown to have invariants, which can be determined from the initial
moments of normalized distributions or directly from data on the reaction kinetics. The physical meaning of the
invariants is considered as statistical rate constants for states with high, medium, and low reactivities that char-
acterize the width of the true distribution and the degree of its asymmetry. The application of the invariants is
considered for particular examples of the fluorescence decay of Rhodamine 6G in porous glasses and of
5,10,15,20-tetrakis(pentafluorophenyl)porphyrin in the Langmuir–Blodgett layers. Despite uncertainty of the
inverse problem solution, the application of the invariants gives rise to unambiguous characteristics of the reac-
tivity of compounds in reactions with distributed parameters.
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 are the amplitude (concentration) and rate constant of
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th state, respectively.
For a continuous set of states, the sum in Eq. (1) is

replaced by the integral
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 is the number of experi-
mental points and the corresponding equations.

The set of Eqs. (3) can be solved by iterative meth-
ods and has a variety of approximate solutions because
of the inevitable error in experimental data. Since this
problem is classified as incorrect according to
Tikhonov, a search for a stable solution is performed
under the conditions of various types [12, 16]. The
requirement that the number of particles 
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i
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 be non-
negative already eliminates solutions without physical
meaning [10]. The best solution is selected from the
remaining solutions under the condition that the calcu-
lated curve 

 

Y

 

(

 

t

 

)

 

 has a minimal deviation from the exper-
imental points according to the 
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 criterion:
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For the recovery of a continuous distribution, one

can apply the same approach as in the exponential
series method (ESM) [14] for the deconvolution of the
fluorescence decay curve. According to ESM, the inte-
gral in Eq. (2) is replaced by the approximate sum of
many exponentials with fixed rate constants 

 

k

 

i

 

, which
are uniformly distributed in a prespecified interval on
the logarithmic scale of 

 

k

 

. As a result, the problem is
reduced to the solution of the set of Eqs. (3) with con-
stant coefficients 

 

B

 

ij

 

 with respect to unknown quantities
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i

 

. The distribution recovered by ESM in the 
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( ) –

 

 plot consists of steps with equal widths, which
approximately describe the true continuous distribu-
tion.

The above methods to be applied need 
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knowledge about the type (continuous or discrete) of
the desired distribution. However, when studying the
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kinetics of chemical processes, the number of reactive
states is usually unknown beforehand.

In this work, we developed a general and more accu-
rate method of approximate solution recovery for the
set of Eqs. (3). We may call it the method of hyperbolic
series (MHS). It does not require the number of partic-
ipants of the process to be known beforehand. For dis-
tribution recovery using MHS, let us assume that all
reactive states can be divided into 

 

n

 

 groups, each of
which contains different states in such a way that the
number of states in the 

 

i

 

th group decreases in the course
of the reaction according to the law 
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, where
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 and 
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 are the initial number of states and the kinetic
parameter of the reaction in the 

 

i

 

th group, respectively.
In this case, the kinetic curve of the reactions can be
represented as the sum of power functions of the hyper-
bolic type

 

(5)

 

where 

 

n

 

 and 

 

ν

 

 are prespecified positive integers.
The 

 

Y

 

(t) function specified by Eq. (5) is an approxi-
mation and describes the reaction kinetics in a finite
time interval, which is always implemented in the
experiments. The function is convenient because it
coincides with the exponential function in any finite
interval of variation of the argument 0 ≤ x ≤ xmax, so that
the (1 + x/ν)–ν/exp(–x) ratio differs from 1 by less than
an indefinitely small value of ε > 0 at ν > (xmax)2/2ε.

The inverse Laplace transform of the Y(t) function
specified by Eq. (5) gives rise to the exact analytical
expression for a(k):

(6)

In order to seek Y(t), we prespecified n, ν, the inter-
val of possible ki values, and the ki values uniformly
distributed in the specified interval on the logarithmic k
scale. Then only the ci parameters remain unknown.
They are found from the set of Eqs. (3a) with the constant
coefficients Hij = (1 + kitj/ν)–ν on condition that ci ≥ 0:

(3a)

The number of groups n can be assumed to be quite
high. We took n = 10–100. If some groups turn out to be
unnecessary, ci corresponding to these groups are found
to be equal to 0. Therefore, the approximating function
Y(t) can be very complicated with many fitting param-
eters ci. This provides broad possibilities for a search
for the most exact description of the kinetic curve. As
soon as it has been found, the corresponding distribu-
tion is automatically obtained from Eq. (6). Since at
ν  ∞ Eq. (5) is transformed into Eq. (1), the MHS
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can be used to determine both continuous and discrete
distributions.

To check the MHS, we simulated the kinetic curve
of a first-order reaction with specified distributions for
cases when the data scatter is described by the Gaussian
or Poisson statistics. The exact kinetic curve Y(t) spec-
ified by the true distribution was calculated using Eq. (1)
when Y(t) changed from 106 to 2 × 103. The experimen-
tal values of Yj at the moment tj (number of points
N = 500) were obtained as the Poisson or Gaussian ran-
dom value with a mean equal to the exact Y(tj) value.
Then the inverse problem was solved: the MHS was

used to search for the a(k) distribution, which describes
experimental data.

Figure 1 shows that the proposed method can
recover an unambiguous solution, distinguish a contin-
uous distribution from a discrete one, and determine the
number of active reaction centers. For example, the
MHS finds the valid distribution for a 3 : 3 : 4 ternary
system (Fig. 1a), and the acceptable value χ2 = 1.075 is
achieved at ν = 1000. This distribution is formally con-
tinuous. However, the parameters found are grouped in
three narrow k intervals so that the distribution obtained
can be considered to be discrete. A further increase in

–2 –1 0 1
0

1
0

1
0

1 (a)

(b)

(c)

Distribution a(logk), rel. units

log k [s–1]

Fig. 1. Recovery of distributions using the method of hyperbolic series: (a) 3 : 3 : 4 ternary system, (b) 1 : 1 binary set; (c) rectangular
continuous distribution. True distributions are shown by vertical lines.
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ν > 1000 results only in a narrowing of the found peaks,
and at lower ν < 1000 none of the other distributions
agrees with the experiment. Similarly, for a 1 : 1 binary
system, the MHS finds a valid discrete distribution with
the same composition (surface areas under the peaks
are the same) (Fig. 1b), and the acceptable value χ2 =
1.12 is achieved at values as low as ν = 200. For a sys-
tem with a continuous distribution of states, the MHS
finds a distribution that is close to true and provides a
valid description of the kinetics (χ2 = 1.06) already at
ν = 150 (Fig. 1c).

Thus, the MHS gives inverse problem solutions
describing experimental data with the highest accuracy
restricted by the experimental error.

Although the results obtained show that an unam-
biguous solution of the inverse problem using MHS is
really possible, strictly speaking, many examples of
unambiguous solutions do not prove its uniqueness for
any sets of states. On the other hand, one example is
sufficient to prove that ambiguity is possible. Using the
MHS, we found that some quite complicated distribu-
tions that differ considerably in shape give kinetic func-
tions coinciding in an interval of concentrations that
varies by 18 orders of magnitude. In order that the dif-
ference in these functions exceed 1%, a change in con-
centration of 24–30 orders of magnitude is required,
which is higher than reasonable experimental possibil-
ities. This situation forced us to give special attention to
an analysis of ambiguous solutions.

AMBIGUOUS SOLUTIONS
OF THE INVERSE PROBLEM

For a search and analysis of ambiguous solutions,
we simulated the kinetic curves of a first-order reaction
with the specified discrete set A of 10 reactive states
with equimolar composition.

The exact kinetic curve Y(t) specified by set A (solid
line) and experimental points (their number was taken
as equal to N = 100) with the random scatter according
to the Gaussian statistics with the mean-square error of
measurements σexp = 0.003 are presented in Fig. 2a.
The deviations of the experimental points from the
exact curve ∆Yj = Yj – Y(tj) characterizing the scatter of
experimental data are presented in Fig. 2b.

The subsequent solving of the inverse problem by
the standard search for a discrete distribution of several
states recovers a series of discrete sets describing the
same kinetic curve Y(t) with approximately the same
mean-square error σ equal to the experimental error
σexp. Some of the recovered distributions, in addition to
the true distribution A of 10 states, are presented in
Fig. 3: set B of 16 states, C of 7 states, and D of 3 states.
The same data can easily be described by sets with a
higher number of states. Since all these distributions
give the equivalent description of the experiment, we
can conclude that a variety of discrete solutions to the

problem exist, and the desired number of reactive states
for sufficiently complicated sets is, thus, uncertain.

Some continuous distributions recovered by MHS
are presented in Fig. 4. To verify the accuracy of the
solutions, the kinetic curve of the reaction was calcu-
lated from the recovered distributions by applying
Eq. (5), and then this curve was compared with the
experimental data. At ν > 3 the error σ of kinetics
description by the recovered distributions is found to be
the same and equal to the experimental error (σ =
0.003). Note that the deviations (∆Y) of the experimen-
tal data from the calculated curves shown in Figs. 4 and
2 almost coincide. This means that the method pro-
posed provides the highest accuracy of solutions and
finds the optimal fitting curve, which virtually coin-
cides with the true curve of the reaction at the absolute
accuracy of measurements. Thus, neither the accuracy
of measurements nor the accuracy of analysis can be a
criterion for the choice of the true distribution from a
variety of solutions.

To confirm this conclusion, simulation experiments
were performed with the highest (possible to date)
accuracy of measurements. The number of experimen-
tal points with the random scatter according to the Pois-
son statistics was taken as equal to N = 500. The initial
signal was taken as equal to Y(0) = 106. Under these
conditions, the initial error of measurements is 0.1%.
The examples of continuous solutions recovered are

0.01

0.01

0.1

1.0

0

–0.01

Y, rel. units

∆Y

t × 10–3, s
0 2 4 6 8 10

Fig. 2. (a) Kinetic curves of the first-order reaction involv-
ing 10 reactive states with the specified composition (set A,
ai = 0.1, ki = 2i × 10–4) (solid line) and experimental points
(N = 100) with the scatter according to the Gaussian statis-
tics; (b) deviations ∆Y of experimental points from mean
values.
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Fig. 3. Discrete distributions describing the kinetic curve in Fig. 2: (1) initial distribution A of 10 states and (2) recovered distribu-
tions B of 16 states, (3) C of 7 states, and (4) D of 3 states. Amplitudes for B and C are marked by dotted lines for clarity.
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Fig. 4. Continuous distributions describing the experimental data presented in Fig. 2 and curves approximating them by Eq. (5) at
n = 20 and parameter ν equal to (1) 4 (distribution E), (2) 10 (distribution F), and (3) 100 (distribution G). The corresponding devi-
ations ∆Y of the experimental points from the calculated curves are presented on the right.
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presented in Fig. 5. Residuals r (as the characteristics of
differences between the experimental points and the
kinetic curves computed from the recovered distribu-
tions) were calculated using the equation

rj = [Yj – Y(tj)]/σj. (7)

As follows from Fig. 5, despite the highest accuracy
of the model experiment, there is a variety of distribu-
tions describing the experimental data with approxi-
mately the same residual profile. Moreover, the accu-
racy of the fitting does not allow us to draw a conclu-
sion about the shape of the true distribution. For
example, distribution P3 (at ν = 150) is closer to a dis-
crete one than distribution P2 (at ν = 20) but gives a
somewhat higher (χ2 = 1.09) error of the fitting com-
pared to that for P2 (χ2 = 1.08).

The results obtained show that the solution of the
inverse problem for a multicomponent reaction of the
first order can be uncertain. In such cases, to choose the
valid solution, the exact number of participants of the
process should be determined in additional experi-
ments.

Uncertainty is usually avoided using the so-called
principle of lowest expenses: the simplest solution,
which requires the lowest number of parameters, is

preferable [16]. For example, discrete distributions of
two to three states are usually used for the description
of fluorescence decay [12, 19]. However, this approach
does not guarantee that the chosen distribution is true.
As a result, characteristics of states that probably do not
exist, are obtained.

INVARIANTS OF SOLUTIONS
OF THE INVERSE PROBLEM

The obtained solutions have common properties:
distributions different in shape lie in approximately the
same interval of the k values as the true distribution
does; in addition, they reproduce the kinetic curve of
the reaction. Therefore, we can assume that a set of
inverse problem solutions has invariants, that is, quan-
tities retaining their values on going from one distribu-
tion to another. To check this assumption, we chose the
initial moments of normalized distributions of the sth
order as possible invariants:

(8)ks ksa k( ) kd

0

∞

∫ ki
sai,
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Fig. 5. Continuous solutions a(k) of the inverse problem for the reaction specified by set A (Poisson statistics, number of experi-
mental points N = 500) found by the MHS at n = 20 and parameter n equal to (1) 6 (distribution P1), (2) 20 (distribution P2), and
(3) 150 (distribution P3) and residuals r of the experimental points from the fitting curves.
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(9)

The results of calculation of the moments of the
recovered distributions are presented in Tables 1 and 2.
The same results were obtained with different realiza-

tions of experimental data. It can be seen that , ,

and  change slightly (within 10%) on going from one
distribution to another. Their values are close to the true
moments of distribution A. This is valid even when the
error of kinetics description by the found solution is
two times higher than the experimental error (Table 1,
distribution D with σ = 0.006).

The accuracy of determination of the moment
decreases with an increase in its order s. Nevertheless,

the scatter of  = 0.0014–0.0019 s–2 and  = (1.2–
3.0) × 10–4 s–3 remains appropriate for an unambiguous
characterization of the distributions describing the
kinetics with an error no higher than the experimental
error. It is important that enhancing the accuracy of
measurements (Table 2) enables one to decrease the

scatter of the  and  values. In this case, the distri-
butions, which correctly describe the kinetics (that is,

kln( )s kln( )sa k( ) kd

0

∞

∫ kln i( )sai.
i 1=

n

∑= =

1/k kln

k

k2 k3

k2 k3

for which χ2 = 1 ± 0.1), give moment values that almost
coincide with the true moments despite the ambiguity
of the distributions themselves.

Thus, the moments of distributions from a set of
inverse problem solutions are approximately invariants,
whose accuracy of determination results from the
experimental error and the accuracy of kinetics descrip-
tion. The moments are invariant because they are unam-
biguously related to the reaction kinetics. At s = –1, it
follows from Eq. (8) that

(10)

One can easily be convinced of the latter by inserting
the expressions for Y(t) by Eqs. (1) or (2) into Eq. (10).

Thus, the mean value of  is equal to the area under
the kinetic curve Y(t) and, hence, is an invariant of dis-
tributions describing this curve. Since low 1/k make the
largest contribution to the sum of inverse k values, the
quantity

(11)

is a statistical characteristic of reaction rate constants
for the states with low reactivity.

1/k Y t( ) t.d

0

∞

∫=

1/k

klow 1/ 1/k( )=

Table 1.  Moments of normalized distributions found for the model kinetic curve of the reaction specified by distribution A
(100 points, Gaussian statistics, σexp = 0.003)

Distribution* σ , s , s–1  × 103, s–2  × 104, s–3

A 0.003 999 –5.39 0.020 1.4 1.2

B 0.003 1030 –5.39 0.021 1.7 2.1

C 0.003 1060 –5.39 0.022 1.9 3.0

D 0.006 946 –5.47 0.014 0.5 0.2

E 0.003 1058 –5.38 0.022 1.9 2.6

F 0.003 943 –5.39 0.021 1.6 1.8

G 0.003 1160 –5.40 0.021 1.5 1.3

* The distributions are presented in Figs. 3 and 4.

1/k kln k k2 k3

Table 2.  Moments of normalized distributions found for the model kinetic curve of the reaction specified by distribution A
(500 points, Poisson statistics, Y(0) = 106)

Distribution* χ2 , s , s–1  × 103, s–2  × 104, s–3

A 1.04 999 –5.39 0.020 1.4 1.2

P1 1.33 1014 –5.30 0.022 1.8 2.1

P2 1.08 1007 –5.38 0.020 1.4 1.3

P3 1.09 1001 –5.38 0.021 1.5 1.3

* The distributions are presented in Figs. 3 and 5 (without normalization).

1/k kln k k2 k3
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At s = 1, we obtain from Eqs. (1), (2), and (8) that

(12)

Equation (12) suggests that the mean value of the

rate constant  is equal to the initial reaction rate for all
distributions describing the kinetic curve Y(t) and,
hence, is an invariant of these distributions. Since the
high k values contribute greatly to the sum of the k val-
ues, the quantity

is a statistical characteristic of reaction rate constants
for the states with high reactivity.

Similarly, at s > 1 the expressions for the sth derivative
at zero time can be obtained from Eqs. (1), (2), and (8):

(13)

The mean values of ks are also invariants. However,
the accuracy of their determination decreases with an
increase in s. As is well known, the numerical differen-
tiation of the functions can be applied up to s < 5.

The mean value of lnk is related to the reaction
kinetics by the more complicated relation

(14)

To prove Eq. (14), one has to replace the lower limit
of integration of its right part by the low ε value, insert
the expression for Y(t) from Eqs. (1) or (2), integrate
with respect to t, and go to the limit at ε  0.

As follows from Eq. (14), the value of  is an
invariant of the solutions describing Y(t). It determines
the center of gravity of the distribution on the logarith-
mic scale of k and halves the area under the symmetri-
cal distribution. The value of kw at the center of gravity
of the distribution can be found from the equation

(15)

It is a statistical characteristic of the medium inter-
val of reaction rate constants. It can be named the
weight-average rate constant and has a significant dis-
tinctive feature: regardless of the distribution shape, the
concentration decreases by a factor of about e at the
time τw = 1/kw.

The expressions relating the reaction kinetics to the
moments of a higher order of s > 1 can be obtained sim-
ilarly. However, already the first three invariants (khigh,
kw, and klow) determined from the initial rate, the center
of gravity of the distribution, and the area under the
kinetic curve give sufficiently important characteristics
of the true distribution. The distance between khigh and
klow on the logarithmic scale of k quantitatively charac-

k dY t( )
dt

-------------
t 0=
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k

khigh k=

ks dsY t( )
dts
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t 0=

.=

kln
Y t( ) t–( )exp–

t
----------------------------------- t.d

0

∞

∫–=

kln

kw kln( ).exp=

terizes the distribution width, and their positions rela-
tively to the weight-average constant at the center of
gravity suggest a degree of asymmetry of the distribu-
tion. In symmetrical distributions, lnkw lies in the mid-
dle between lnklow and lnkhigh. In asymmetrical distribu-
tions, if, for example, lnklow is farther from the center of
gravity than lnkhigh, the left descending region of the
a(lnk) curve with low rate constants is more elongate.

Note that the calculation of invariants can also be
applied to both broad and very narrow distributions. For a
monoexponential kinetic curve, all of the three invariants
(khigh, kw, and klow) coincide and equal the true rate constant.
In this case, they are merely different determinations of the
same rate constant. Therefore, their exact coincidence is a
criterion for a simple reaction of the first order.

APPLICATION OF INVARIANTS

The kinetics is ambiguously described, for example,
in analysis of the fluorescence decay of Rhodamine 6G
in porous SiO2 glass [20]. Thus, Hungerford et al. [20]
found that with a dye concentration of 0.24 mM the
reactivity of the dye can be explained by two mutually
exclusive sets of states. The short-lived state predomi-
nates in the first set (a1 = 0.72, τ1 = 3.37; a2 = 0.28, τ2 =
4.66). The long-lived state prevails in the second set
(a1 = 0.47, τ1 = 3.10, a2 = 0.53, τ2 = 4.30). None of the
found sets can be preferred because both of them con-
tain a minimal number of parameters and describe the
experimental data with the same accuracy. This uncer-
tainty can be eliminated using invariants. Inserting the
values of ai and ki = 1/τi into Eqs. (8) and (9), one can
easily be convinced that the invariants of Rhodamine
6G fluorescence retain their values on going from one
set to another. For example, both sets give the same
value τw = 3.7 ns (lnτw = 0.72ln3.37 + 0.28ln4.66 =
0.47ln3.10 + 0.53ln4.30). Thus, despite an uncertainty
in the inverse problem solution, the unambiguous char-
acteristics of Rhodamine fluorescence was obtained.

Let us consider published data [4] on the fluores-
cence decay of 5,10,15,20-tetrakis(pentafluorophe-
nyl)porphyrin (PFP) in the Langmuir–Blodgett layers
as the second example of the application of invariants.
The kinetics of this process is multiexponential and
described by discrete distributions. With an increase in
the PFP concentration, the distributions (due to their
uncertainty) change irregularly. Thus, the concentration
dependence of the reaction kinetics cannot be judged.
Using the data on the distributions (Table 1 in [4]), we
calculated the invariants of the fluorescence decay of
PFP. The results of the calculation (Fig. 6) show that the
fluorescence of PFP is characterized by a narrow sym-
metrical distribution, whose width decreases with PFP
concentration. The klow, kw, and khigh invariants system-
atically decrease with PFP concentration, indicating an
interesting phenomenon: the slowing down of fluores-
cence decay. In fact, this phenomenon is seen in the
kinetic curves without analysis. However, the phenom-
enon can be quantitatively characterized by the calculation
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of invariants. As can be seen in Fig. 6, the region of high
concentrations is of greatest interest, where the invariants
decrease especially strongly, so that further change in the
structure of the PFP aggregates could result in a more con-
siderable slowing down of fluorescence decay.

CONCLUSION

In this work, the method of hyperbolic series was
proposed for the determination of distributions in first-
order chemical reactions. The method was verified for
model systems to demonstrate that it recovers the dis-
tribution corresponding to experimental data with the
highest accuracy. It does not require any a priori
knowledge of the type of the initial distribution, and it
can be applied to a search for both continuous and dis-
crete distributions.

Using this method, we found that distributions with
different shapes can give the same reaction kinetics
coinciding to very high degrees of conversion. Hence,
an ambiguity of distributions is a property inherent in
the kinetic description of a multicomponent system. 

Under conditions of uncertainty, we propose the use
of invariants determined from the moments of distribu-
tions. The approach based on invariants is advanta-
geous compared to the traditional analysis of distribu-
tions. First, the invariants do not require a priori
hypotheses and seriously restrict arbitrariness in the
interpretation of kinetic data. Second, they provide
unambiguous quantitative characteristics of the true
distribution. Third, the invariants make it possible to
monitor the experimental accuracy necessary for reli-
able estimations. For example, if an invariant does not
retain its value on going from one of the found distribu-
tions to another, in order to estimate it reliably the accu-
racy of measurements needs to be increased. Finally,
the more invariants are determined, the more complete
is the information on the true distribution. As is known

from statistical physics, the knowledge of all moments
is equivalent to the knowledge of the distribution.

Note that the use of invariants provides unambigu-
ous quantitative characteristics of the reactivity of com-
pounds in multicomponent reactions.
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Fig. 6. Plot of the invariants (1) klow, (2) kw, and (3) khigh of
PFP fluorescence decay in the Langmuir–Blodgett layers vs.
PFP concentration (calculated from the published data [4]).


